The clustering morphology of freely rising deformable bubbles
نویسندگان
چکیده
منابع مشابه
Hydrodynamic investigation of multiple rising bubbles using lattice Boltzmann method
Hydrodynamics of multiple rising bubbles as a fundamental two-phase phenomenon is studied numerically by lattice Boltzmann method and using Lee two-phase model. Lee model based on Cahn-Hilliard diffuse interface approach uses potential form of intermolecular forces and isotropic finite difference discretization. This approach is able to avoid parasitic currents and leads to a stable procedure t...
متن کاملGrowing bubbles rising in line
Over many years the author and others have given theories for bubbles rising in line in a liquid. Theory has usually suggested that the bubbles will tend towards a stable distance apart, but experiments have often showed them pairing off and sometimes coalescing. However, existing theory seems not to deal adequately with the case of bubbles growing as they rise, which they do if the liquid is b...
متن کاملMorphology of Rising Hydrodynamic and Magneto-hydrodynamic Bubbles from Numerical Simulations
Recent Chandra and XMM-Newton observations of galaxy cluster cooling flows have revealed X-ray emission voids of up to 30 kpc in size that have been identified with buoyant, magnetized bubbles. Motivated by these observations, we have investigated the behavior of rising bubbles in stratified atmospheres using the Flash adaptive-mesh simulation code. We present results from 2-D simulations with ...
متن کاملUnfolded optical glory of spheroids: backscattering of laser light from freely rising spheroidal air bubbles in water.
Enhancement in backscattering known as glory scattering results from geometric and material properties of spherically symmetric scatterers. The wave-front shape near the spherical scatterer is locally a circular torus. Radiation from a toroidal wave front is axially focused on the backward-directed axis. It is shown that the axial point caustic unfolds to an astroid caustic as the scatterer's s...
متن کاملThermocapillary motion of deformable drops and bubbles
In this paper we report on a numerical method to include Marangoni forces into a finitevolume solver for multi-phase flows. Our work is motivated by the question of whether thermal fluctuations typically found in combustion applications can impact the atomization of fuel drops due to variations in surface tension. To verify and validate our proposed method, we compare our results to theoretical...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Fluid Mechanics
سال: 2013
ISSN: 0022-1120,1469-7645
DOI: 10.1017/jfm.2013.100